![]() Die obenstehende Grafik wurde mit folgendem GNU Octave Script erstellt: k = 1.3806504*10^-23; q = 1.602176487*10^-19; T_0C = 273.15; T_25C = T_0C+25; T_50C = T_0C+50; T_100C = T_0C+100; n = 1; U_D = 0:0.01:1.5; U_T_0C = (k*T_0C)/q; U_T_25C = (k*T_25C)/q; U_T_50C = (k*T_50C)/q; U_T_100C = (k*T_100C)/q; I_S_germanium_300K = 10^-7; I_S_silizium_300K = 10^-11; I_S_germanium_0C = I_S_germanium_300K * 2^((T_0C-300)/10); I_S_germanium_25C = I_S_germanium_300K * 2^((T_25C-300)/10); I_S_germanium_50C = I_S_germanium_300K * 2^((T_50C-300)/10); I_S_germanium_100C = I_S_germanium_300K * 2^((T_100C-300)/10); I_S_silizium_0C = I_S_silizium_300K * 2^((T_0C-300)/10); I_S_silizium_25C = I_S_silizium_300K * 2^((T_25C-300)/10); I_S_silizium_50C = I_S_silizium_300K * 2^((T_50C-300)/10); I_S_silizium_100C = I_S_silizium_300K * 2^((T_100C-300)/10); plot( U_D, I_S_germanium_100C*(e.^(U_D/(n*U_T_100C))-1), ";Germanium-Diode bei 100 °C;", # U_D, I_S_germanium_50C*(e.^(U_D/(n*U_T_50C))-1), ";Germanium-Diode bei 50 °C;", # U_D, I_S_germanium_25C*(e.^(U_D/(n*U_T_25C))-1), ";Germanium-Diode bei 25 °C;", U_D, I_S_germanium_0C*(e.^(U_D/(n*U_T_0C))-1), ";Germanium-Diode bei 0 °C;", U_D, I_S_silizium_100C*(e.^(U_D/(n*U_T_100C))-1), ";Silizium-Diode bei 100 °C;", # U_D, I_S_silizium_50C*(e.^(U_D/(n*U_T_50C))-1), ";Silizium-Diode bei 50 °C;", # U_D, I_S_silizium_25C*(e.^(U_D/(n*U_T_25C))-1), ";Silizium-Diode bei 25 °C;", U_D, I_S_silizium_0C*(e.^(U_D/(n*U_T_0C))-1), ";Silizium-Diode bei 0 °C;" ); title("Strom-Spannungs-Kennlinien für Dioden nach Shockley-Gleichung"); axis([0, 1.5, 0, 0.2]); xlabel("U (Volt)"); ylabel("I (Ampere)"); |